Half-life measurement of excited states in neutron-rich nuclei

J.K. Hwang^{1,a}, A.V. Ramayya¹, J.H. Hamilton¹, D. Fong¹, C.J. Beyer¹, K. Li¹, P.M. Gore¹, E.F. Jones¹, Y.X. Luo¹, J.O. Rasmussen², S.J. Zhu³, S.C. Wu², I.Y. Lee², M.A. Stoyer⁴, J.D. Cole⁵, G.M. Ter-Akopian⁶, A. Daniel⁶, and R. Donangelo⁷

¹ Physics Department, Vanderbilt University, Nashville, TN 37235, USA

² Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

³ Department of Physics, Tsinghua University, Beijing 100084, PRC

⁴ Lawrence Livermore National Laboratory, Livermore, CA 94550, USA

 $^5\,$ Idaho National Engineering and Environmental Laboratory, Idaho Falls, ID 83415, USA

⁶ Flerov Laboratory for Nuclear Reactions, Joint Institute for Nuclear Research, Dubna, Russia

⁷ Universidade Federal do Rio de Janeiro, CP 68528, RG, Brazil

Received: 28 October 2004 /

Published online: 20 April 2005 – © Società Italiana di Fisica / Springer-Verlag 2005

Abstract. Half-lives $(T_{1/2})$ of several states which decay by delayed γ transitions were determined from time-gated triple γ coincidence method. We determined, for the first time, the half-life of 330.6 + x state in ¹⁰⁸Tc and the half-life of 19/2⁻ state in ¹³³Te based on the new level schemes. Five half-lives of ^{95,97}Sr, ⁹⁹Zr, ¹³⁴Te and ¹³⁷Xe are consistent with the previously reported ones. These results indicate that this new method is useful for measuring the half-lives.

PACS. 21.10.Tg Lifetimes – 25.85.Ca Spontaneous fission – 27.60.+j $90 \le A \le 149$

Since the classification of delayed γ -rays by Goldhaber and Sunyar [1], half-life $(T_{1/2})$ measurements of nuclear states have been a major source of information on nuclear deformations, shell structures, and validity of nuclear models. Previously, half-lives of several states in neutronrich nuclei have been determined by single- γ or γ - γ coincidence relations for the delayed γ transitions emitted from the isotopes produced in the fission of ²³⁵U, ²³⁹Pu, ²⁴⁸Cm, and ²⁵²Cf [1,2]. Most of the previous results were obtained from the coincidence measurement between the γ transition and the fission fragment after fission. And some of them were obtained from the delayed time measurement of the γ transition following the β -decay after fission.

Usually, more than 100 isotopes are produced in the fission of these heavy nuclei, with each isotope emitting many γ -rays. Because several new nuclei and many new levels in the known nuclei have been identified in the spontaneous fission (SF) of 252 Cf, the present time-gated triple γ coincidence method is very useful for the half-life measurements of nuclear states in neutron-rich nuclei.

The γ - γ - γ coincidence measurements were done by using the Gammasphere facility with 72 Ge detectors and a ²⁵²Cf SF source of strength ~28 μ Ci at LBNL. Several γ - γ - γ coincidence cubes with different time windows, t_w , [1,2] were built for the three- and higher-fold data by using the Radware format. That is, a time-gated cube will contain all triple-coincidence events for which all these time differences are less than the specified time value.

Let us consider a downward cascade consisting of $\gamma_3 - \gamma_2 - \gamma_1 - \gamma_0$ transitions where γ_0 is the outgoing transition from a state with long half-life and γ_1 is the incoming transition into the same state. Other higher states in this cascade are assumed to have very short lifetimes. We set a double gate on E_{γ_3} and E_{γ_1} and compare the intensities of transitions, γ_0 and γ_2 , $N(\gamma_0)$ and $N(\gamma_2)$ in the spectra. In the present work, γ_1 , γ_2 , and γ_3 , are in prompt coincidence. Therefore, the delay-time between γ_1 and γ_3 will be negligible. Since γ_0 is the ending transition in this cascade, the coincidence time window (t_w) limits the TDC time difference, t_{10} , between the γ_1 and γ_0 transitions, and the intensity $N(\gamma_0)$ observed from the state with the long lifetime. The $N(\gamma_0)$ intensity determines the fraction of $N(\gamma_2)$ intensity observed from the state with the long half-life with decay constant, λ . Therefore, $N(\gamma_0)/N(\gamma_2) = C(1 - e^{-\lambda t_w})$ can be applied in this case, where C is a constant.

We applied this method, for the first time, to extract the half-lives of two states in 95,97 Sr [2]. Later, five other cases namely 99 Zr, 133,134 Te, 137 Xe and 108 Tc are investigated as shown in table 1 [1]. Recently, the new level schemes of 133 Te and 108 Tc have been reported from the SF work of 252 Cf. Based on these new level schemes, the half-lives of 1610.4 keV state in 133 Te and $^{330.6} + x$ keV

^a e-mail: jae-kwang.hwang@vanderbilt.edu

Table 1. Half-lives $(T_{1/2} \text{ ns})$ of several states $(E_{\text{IS}}, \text{ keV})$ [1,2]. $E(\gamma_1)/E(\gamma_3)$ are the double-gated transition energies. For ⁹⁷Sr, $E(\gamma_2)/E(\gamma_3)$ and $E(\gamma_1)$ are used instead. Half-lives of delayed γ -rays without the mass identification were reported to be 110 ns for 154.0 keV γ -ray and 115 ns and 81.6(114) ns for 125.5 keV γ -ray [1]. The half-life of the 1610.4 keV state in ¹³³Te is the average value extracted from 125.5 and 1150.6 delayed transitions.

Nuclei	$E_{\rm IS}$	$E(\gamma_1)/E(\gamma_3)$	$E(\gamma_2)$	$E(\gamma_0)$	Present $T_{1/2}$	Reference's $T_{1/2}$ [1]	ENSDF [3]
$^{95}\mathrm{Sr}$	556.1	682.4/678.6	427.1	204.0	23.6(24)	24, 21, 21.8(11)	21.7(5)
$^{97}\mathrm{Sr}$	830.8	239.6/272.5	205.9	522.0	265(27)	382(11), 255(10)	255(10)
$^{99}{ m Zr}$	252.0	426.4/415.2	142.5	130.2	316(48)	294(10), 375(11)	293(10)
$^{108}\mathrm{Tc}$	330.6 + x	123.4/341.6	125.7	154.0	94(10)		
133 Te	1610.4	721.1/933.4	738.6	125.5	99(6)		
134 Te	1692.0	2322.0/516.0	549.7	115.2	197(20)	161(4), 196(7), 175(6)	164(1)
137 Xe	1935.2	311.3/304.1	1046.4	314.1	10.1(9)	8.1(4)	8.1(4)

Fig. 1. Coincidence spectra with double gate on 682.4 and 678.6 keV transitions in $^{95}\mathrm{Sr.}$

Fig. 2. Count ratio *versus* coincidence time window (t_w) plot for ⁹⁵Sr. The curve is the fitted line to $C(1 - e^{-\lambda t_w})$.

state in 108 Tc are reported in the present work. As one example, coincidence spectra with double gate on 682.4 and 678.6 keV transitions in 95 Sr [2] is shown in fig. 1. And the plots for the count ratio *versus* coincidence time window are shown in figs. 2 and 3. The more details for this time-gated triple-coincidence method to determine the level half-life can be seen in refs. [1,2].

In summary, we report half-lives of five states in 95,97 Sr, 99 Zr, 108 Tc, 133 Te, 134 Te, and 137 Xe by using the new time-gated triple-coincidence method. We determined, for the first time, half-lives of 108 Tc and 133 Te based on the new level schemes. The half-lives of states

Fig. 3. Count ratio versus coincidence time window (t_w) plots for ¹⁰⁸Tc and ¹³⁷Xe. The curves are the fitted lines to $C(1 - e^{-\lambda t_w})$.

in $^{95,97}\mathrm{Sr},~^{99}\mathrm{Zr},~^{134}\mathrm{Te},$ and $^{137}\mathrm{Xe}$ are consistent with the previously reported ones. These results indicate that this new method is useful for the half-life measurements.

References

- J.K. Hwang *et al.*, Phys. Rev. C **69**, 57301 (2004) and references therein.
- J.K. Hwang *et al.*, Phys. Rev. C 67, 54304 (2003) and references therein.
- 3. ENSDF in http://www.nndc.bnl.